Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 15(10): e0009806, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610025

RESUMEN

BACKGROUND: Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water. By increasing reliance on hazardous activities and environments, socio-economic vulnerability can hinder reductions in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and vulnerability to the presence and intensity of Schistosoma haematobium re-infection. METHODOLOGY/PRINCIPAL FINDINGS: In 13 villages along the Senegal River, we collected parasitological data from 821 school-aged children, survey data from 411 households where those children resided, and ecological data from all 24 village water access sites. We fit mixed-effects logistic and negative binomial regressions with indices of exposure, hazard, and vulnerability as explanatory variables of Schistosoma haematobium presence and intensity, respectively, controlling for demographic variables. Using multi-model inference to calculate the relative importance of each component of risk, we found that hazard (Æ©wi = 0.95) was the most important component of S. haematobium presence, followed by vulnerability (Æ©wi = 0.91). Exposure (Æ©wi = 1.00) was the most important component of S. haematobium intensity, followed by hazard (Æ©wi = 0.77). Model averaging quantified associations between each infection outcome and indices of exposure, hazard, and vulnerability, revealing a positive association between hazard and infection presence (OR = 1.49, 95% CI 1.12, 1.97), and a positive association between exposure and infection intensity (RR 2.59-3.86, depending on the category; all 95% CIs above 1). CONCLUSIONS/SIGNIFICANCE: Our findings underscore the linkages between social (exposure and vulnerability) and environmental (hazard) processes in the acquisition and accumulation of S. haematobium infection. This approach highlights the importance of implementing both social and environmental interventions to complement mass drug administration.


Asunto(s)
Reinfección/parasitología , Schistosoma haematobium/fisiología , Esquistosomiasis Urinaria/parasitología , Vulnerabilidad Social , Adolescente , Animales , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Reinfección/epidemiología , Reinfección/psicología , Población Rural/estadística & datos numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/aislamiento & purificación , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/psicología , Senegal/epidemiología , Poblaciones Vulnerables/estadística & datos numéricos , Agua/parasitología
2.
Infect Dis Poverty ; 10(1): 35, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33745442

RESUMEN

BACKGROUND: Water resources development promotes agricultural expansion and food security. But are these benefits offset by increased infectious disease risk? Dam construction on the Senegal River in 1986 was followed by agricultural expansion and increased transmission of human schistosomes. Yet the mechanisms linking these two processes at the individual and household levels remain unclear. We investigated the association between household land use and schistosome infection in children. METHODS: We analyzed cross-sectional household survey data (n = 655) collected in 16 rural villages in August 2016  across demographic, socio-economic and land use dimensions, which were matched to Schistosoma haematobium (n = 1232) and S. mansoni (n = 1222) infection data collected from school-aged children. Mixed effects regression determined the relationship between irrigated area and schistosome infection presence and intensity. RESULTS: Controlling for socio-economic and demographic risk factors, irrigated area cultivated by a household was associated with an increase in the presence of S. haematobium infection (odds ratio [OR] = 1.14; 95% confidence interval [95% CI]: 1.03-1.28) but not S. mansoni infection (OR = 1.02; 95% CI: 0.93-1.11). Associations between infection intensity and irrigated area were positive but imprecise (S. haematobium: rate ratio [RR] = 1.05; 95% CI: 0.98-1.13, S. mansoni: RR = 1.09; 95% CI: 0.89-1.32). CONCLUSIONS: Household engagement in irrigated agriculture increases individual risk of S. haematobium but not S. mansoni infection. Increased contact with irrigated landscapes likely drives exposure, with greater impacts on households relying on agricultural livelihoods.


Asunto(s)
Riego Agrícola , Esquistosomiasis/epidemiología , Microbiología del Agua , Adolescente , Animales , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Enfermedades Parasitarias/epidemiología , Factores de Riesgo , Población Rural , Schistosoma , Senegal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...